
Conflict of conservation laws in cyclotron radiation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 L669

(http://iopscience.iop.org/0305-4470/16/17/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) L669-L672. Printed in Great Britain 

LETTER TO THE EDITOR 

Conflict of conservation laws in cyclotron radiation 

R Lieu?, D A Leahyt and A J Evans$ 
t Department of Physics, University of Calgary, Calgary, Alberta, Canada 

Standard Telecommunications Laboratory, Imperial College, London SW7 2BZ, UK 

Received 15 August 1983 

Abstract. Cyclotron radiation carries a continuous flux of energy, momentum and angular 
momentum. Current theory cannot explain how such quantities are derived from the 
emitting particles (electrons). 

For an electron undergoing cyclotron emission in a uniform and constant magnetic 
field ( z  direction by convention) the following basic conservation laws must hold as a 
result of the configurational symmetry of the Hamiltonian. 
Energy conservation. The total Hamiltonian of an interacting system of radiation and 
an electron does not have explicit time dependence. Energy is conserved. We may write 

dEe/dt = -dE,/dt (1) 

d Ee/dt = d( fmr:u: )/ dt  (2) 

where 

(rl is the radius of the electron orbit, u, is the cyclotron frequency) and dE,/dt, the 
rate of energy loss to radiation, is given in the appendix. 
Angular momentum conservation. In the absence of radiation, the gauge-invariant 
generator of infinitesimal rotation about the z axis is given for the electron as (Johnson 
and Lippmann 1949) 

(3) L', = fmu,(r: - r i )  

where rg = x z  + yg is the radial position of the electron guiding centre. L', is conserved 
because of azimuthal symmetry. In the presence of radiation, the symmetry property 
remains in the Hamiltonian. The total angular momentum of (electron+radiation) is 
conserved, i.e. 

dL',/dt = -dL:/dt. (4) 

In cyclotron emission, the vector potential for the radiation at the mth harmonic is 
given in cylindrical polar coordinates as 

(A), =[&+Jm-t(kip) e i ( m - l ) d + &  - J m + l (  k , p )  ei(m+l)d] exp[i( k,z -ut)]  

where J m ( x )  is the Bessel function, k: = k :  + k:, and e+ are polarisation vectors 
describing circularly polarised radiation. For such fields we have L: = m. More 
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importantly, there exists a definite relationship between the energy and angular momen- 
tum carried away by the mth harmonic radiation (Jackson 1975) 

(dL:ldt)m = (m/u)(dEy/dt)m 

and since m / w  = l/u, is a constant, the following equation holds between the total 
energy and angular momentum: 

dL:/dt = U;‘ dEy/dt. ( 5 )  

Equations (l),  (4) and ( 5 )  then imply 

dL‘,/dt = U,’ dE,/dt. 

This, together with (2) and (3),  would give 

d r i ld t  = 0 

as a consequence of energy and angular momentum conservation. The physical meaning 
is that, during radiation, there is no systematic drift in the radial position of the guiding 
centre. 
Linear momentum conservation. In the absence of radiation, the Hamiltonian for the 
electron 

H =  (Zm)-’[p+(e/c)A]’ 

(where A,  = 0 for the field H = H,) is translationally invariant. Thus the corresponding 
generators of infinitesimal translation (Lieu 1980, Herold et a1 1981) 

C = mwcyo, Py = - m w o ,  e = Pz, 
are conserved. Moreover, they all have gauge-invariant meanings. P‘, and P; are 
respectively proportional to the y and x coordinates of the guiding centre. 

During interaction with radiation, the conserved quantity is no longer the electron 
momentum P,, but the total electron and radiation field momentum n = P,+ P, This 
has been demonstrated explicitly (Avron et a f  1978). Ignoring IIz and dropping the 
suffix y for radiation, we may write down the components of ll as 

n x  = mucyo + Px, IIy = -“w,x,+ Py (7) 
For the purpose of the present paper it is important to enter cylindrical geometry and 
construct the following quantity for the electron, 

r i  = x i  + y; = (mw,)-’[n’ - 2(nXpx + I I ~ , , )  + P’] (8) 

where IIz = II: +II: etc. We now take time derivatives of (7) and (8) to yield 

dxo 1 d P  
- -,  YO - 1 dPx 

dt  mu, dt  ’ dt mu, dt  

dt  dt  
-r i  d = (muc)-’[ + ~ - 2 (  
dt  

Now we interpret (9) physically. dPx/dt and dPJdt are respectively the rates in which 
x and y momentum are carried away by the radiation. Owing to azimuthal symmetry, 
such quantities must be zero (as will be justified in the appendix). However, (dP’/dt) 
is the rate in which radial ( p )  momentum is dissipated. That is, in general, finite. 
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Thus we have from ( 9 b )  

dr i ld t  = (mu,)-’ dP’/dt. (10) 

Demonstration of the finiteness of (dP2/dt) will also be given in the appendix. But 
the crucial point is to realise that (10) implies an ‘outward drift’ of the guiding centre, 
and is fundamentally incompatible with ( 6 ) .  

Within the scope of current knowledge there appears no simple way of resolving 
the paradox. 

Part of the work was done while RL and AJE were at the Blackett Laboratory, 
Imperial College, London. We thank Professor T W B Kibble FRS, and Drs N Rivier, 
J J Quenby and G Wunner for helpful discussions. The work was supported by NSERC 
(Ottawa) grants 69-0366 to D Leahy and 69-1565 to Professor D Venkatesan. 

Appendix 

The linear momentum terms dP,/dt, dP,/dt and dP’/dt of the radiation may be 
calculated directly from the Maxwell stress tensor (see Jackson 1975, p 239).  A simpler 
way of arriving at the main conclusions in the text is to start from the known formula 
of the energy radiated in a given harmonic m, per unit solid angle and per unit time 
(Bekefi 1966) 

j (o,  e)=(e’w’/8.rr’eoc)[cot2 e J $ ( m p  sin e ) + p 2 J 2 ( m p  sin e ) ]  

where p = v / c  and v is the (transverse) velocity of the electron, 0 is the pitch angle 
of radiation propagation, and w = mu,. Multiplication of j ( w ,  8 )  by ( l l c )  sin f3 cos 4, 
( l / c )  sin 8 sin 4, followed by integration over dR = sin 8 d8  d 4  and summation over 
all harmonics, gives respectively the expressions dPJdt and dP,/dt, namely 

dPx 
dt  ~ T ’ E O C ~  m = l  

-=- e’ 2 U’ J de  d 4  [cos’ e cos 4 J’, ( m p  sin e )  

+ p’ sin’ 6 cos 4 J E  ( m p  sin e ) ] ,  

%=- e’ ‘f U’ 5 d8  d 4  [cos’ f3 sin 4 J‘, ( m p  sin 8 )  
dt  ~ T ’ E ~ c ’  m = l  

+p’ sin’ e sin 4 J: ( m p  sin e)]. 

The 4 integration reveals immediately that dP,/dt = dP,/dr = 0. Concerning the 
finiteness of dP’/dt, it is sufficient to show that dP/dt  # 0. The latter is obtained from 
the multiplication of j (  U ,  0 )  and ( l / c j  sin 8, and summing over solid angle and cyclotron 
harmonics as before: 

We will not proceed to complete the calculation because it appears sufficiently evident 
that dP/dt  is positive definite, as expected in the text. 
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